

IEC/IEEE 62582-5

Edition 1.0 2015-06

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Nuclear power plants – Instrumentation and control important to safety – Electrical equipment condition monitoring methods – Part 5: Optical time domain reflectometry

Centrales nucléaires de puissance – Instrumentation et contrôle-commande importants pour la sûreté – Méthodes de surveillance de l'état des matériels électriques –

Partie 5: Technique de rétrodiffusion

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 27.120.20 ISBN 978-2-8322-2704-6

Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

CONTENTS

FOREW	ORD	4
INTROD	UCTION	6
1 Sco	pe and object	8
2 Nori	mative references	8
3 Terr	ns and definitions	8
	reviations and acronyms	
	eral description	
	licability and reproducibility	
	DR measurements procedure	
7.1	General	
7.2	Instrumentation	
7.3	Measurement wavelengths	
7.4	Calibration	
7.5	Precautions for OTDR measurements	
7.6	Conditioning	
7.7	OTDR measurement	
7.8	Measurement errors	
7.9	Test report	15
systems	(informative) Factors affecting the measurement of attenuation in fibre optic	16
A.1	General	16
A.2	Temperature and humidity	
A.3	Bending	16
A.4	Transmission light power	16
A.5	Connector interface	16
Annex B	(informative) Ageing and degradation of optical fibres in nuclear power plants	17
B.1	Factors affecting ageing	17
B.1.		
B.1.	2 Thermal ageing	17
B.2	Ageing in ionising radiation	18
B.2.	1 General	18
B.2.	2 Increase of attenuation	18
Annex C	(informative) Guidance on selection of parameters for the measurement	22
C.1	Selection of distance range	22
C.2	Selection of pulse duration and definition of dead zone	22
C.3	Selection of wavelength	22
C.4	Selection and position of markers	22
C.5	Selection of method for averaging	24
C.6	Setting of the vertical and horizontal scale (v-zoom, h-zoom)	24
C.7	Vertical and horizontal shifts	24
C.8	Laser on/off	25
C.9	Setting of IOR, group index	25
C.10	Use of attenuator	25
Bibliogra	phy	26

IEC/IEEE 62582-5:2015
© IEC/IEEE 2015

Figure 1 – Block functions of the OTDR	12
Figure 2 – A typical OTDR waveform – Backscattered power vs distance (km)	14
Figure 3 – Examples of faults	14
Figure B.1 – A typical OTDR-trace	17
Figure B.2 – RIA of different fibre types	19
Figure B.3 – Example for RIA and its wavelength dependence of an optical fibre	20
Figure C.1 – Markers for measuring attenuation	23
Figure C.2 – Markers for measuring splice loss	23
Figure C.3 – LSA and 2PA as approximation methods	24
Figure C.4 – Fibre signature with the attenuator set at 0 dB and 5 dB, respectively	25

INTERNATIONAL ELECTROTECHNICAL COMMISSION

NUCLEAR POWER PLANTS – INSTRUMENTATION AND CONTROL IMPORTANT TO SAFETY – ELECTRICAL EQUIPMENT CONDITION MONITORING METHODS –

Part 5: Optical time domain reflectometry

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organisation for standardisation comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardisation in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organisations liaising with the IEC also participate in this preparation. IEEE Standards documents are developed within IEEE Societies and Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of IEEE and serve without compensation. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards. Use of IEEE Standards documents is wholly voluntary. IEEE documents are made available for use subject to important notices and legal disclaimers (see http://standards.ieee.org/IPR/disclaimers.html for more information).

IEC collaborates closely with IEEE in accordance with conditions determined by agreement between the two organisations. This Dual Logo International Standard was jointly developed by the IEC and IEEE under the terms of that agreement.

- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. The formal decisions of IEEE on technical matters, once consensus within IEEE Societies and Standards Coordinating Committees has been reached, is determined by a balanced ballot of materially interested parties who indicate interest in reviewing the proposed standard. Final approval of the IEEE standards document is given by the IEEE Standards Association (IEEE-SA) Standards Board.
- 3) IEC/IEEE Publications have the form of recommendations for international use and are accepted by IEC National Committees/IEEE Societies in that sense. While all reasonable efforts are made to ensure that the technical content of IEC/IEEE Publications is accurate, IEC or IEEE cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications (including IEC/IEEE Publications) transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC/IEEE Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC and IEEE do not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC and IEEE are not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or IEEE or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees, or volunteers of IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board, for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC/IEEE Publication or any other IEC or IEEE Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that implementation of this IEC/IEEE Publication may require use of material covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. IEC or IEEE shall not be held responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patent Claims or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

International Standard IEC/IEEE 62582-5 has been prepared by subcommittee 45A: Instrumentation, control and electrical systems of nuclear facilities, of IEC technical committee 45: Nuclear instrumentation, in cooperation with the Nuclear Power Engineering Committee of the IEEE Power & Energy Society¹, under the IEC/IEEE Dual Logo Agreement between IEC and IEEE.

This publication is published as an IEC/IEEE Dual Logo standard.

The text of this standard is based on the following documents:

FDIS	Report on voting
45A/1008A/FDIS	45A/1021/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC/IEEE 62582 series, published under the general title *Nuclear* power plants – *Instrumentation and control important to safety* – *Electrical equipment condition monitoring methods*, can be found on the IEC website.

The IEC Technical Committee and IEEE Technical Committee have decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

A list of IEEE participants can be found at the following URL: http://standards.ieee.org/downloads/62582/62582-5-2015/62582-5-2015 wg-participants.pdf.

INTRODUCTION

a) Technical background, main issues and organisation of the Standard

This IEC/IEEE standard specifically focuses on optical time domain reflectometer methods for condition monitoring for the management of ageing of optical fibres and cables in electrical equipment installed in nuclear power plants.

This IEC/IEEE standard is the fifth part of the IEC/IEEE 62582 series. It contains detailed descriptions of condition monitoring based on optical time domain reflectometer measurements on optical fibres and cables.

The IEC/IEEE 62582 series of standards is issued with a joint logo, which makes it applicable to management of ageing of electrical equipment qualified to IEEE as well as IEC Standards.

Historically, IEEE Std 323[™]-2003 introduced the concept and role that condition based qualification could be used in equipment qualification as an adjunct to qualified life. In equipment qualification, the condition of the equipment for which acceptable performance was demonstrated is the qualified condition. The qualified condition is the condition of equipment, prior to the start of a design basis event, for which the equipment was demonstrated to meet the design requirements for the specified service conditions.

Significant research has been performed on condition monitoring techniques and the use of these techniques in equipment qualification as noted in NUREG/CR-6704, vol.2 (BNL-NUREG-52610) and JNES-SS-0903, 2009.

It is intended that this standard be used by test laboratories, operators of nuclear power plants, systems evaluators and licensors.

b) Situation of the current standard in the structure of the IEC SC 45A standard series

IEC/IEEE 62582-5 is the third level IEC SC 45A document tackling the specific issue of application and performance of optical time domain reflectometer measurements in management of ageing of optical fibres and cables in electrical instrument and control equipment in nuclear power plants.

IEC/IEEE 62582-5 is to be read in association with IEC/IEEE 62582-1, which provides requirements for application of methods for condition monitoring of electrical equipment important to safety of nuclear power plants.

For more details on the structure of the IEC SC 45A standard series, see item d) of this introduction.

c) Recommendations and limitations regarding the application of this standard

It is important to note that this standard establishes no additional functional requirements for safety systems.

d) Description of the structure of the IEC SC 45A standard series and relationships with other IEC documents and other bodies documents (IAEA, ISO)

The top-level document of the IEC SC 45A standard series is IEC 61513. It provides general requirements for I&C systems and equipment that are used to perform functions important to safety in NPPs. IEC 61513 structures the IEC SC 45A standard series.

IEC 61513 refers directly to other IEC SC 45A standards for general topics related to categorisation of functions and classification of systems, qualification, separation of systems,

defence against common cause failure, software aspects of computer-based systems, hardware aspects of computer-based systems, and control room design. The standards referenced directly at this second level should be considered together with IEC 61513 as a consistent document set.

At a third level, IEC SC 45A standards not directly referenced by IEC 61513 are standards related to specific equipment, technical methods, or specific activities. Usually these documents, which make reference to second-level documents for general topics, can be used on their own.

A fourth level extending the IEC SC 45A standard series, corresponds to the Technical Reports which are not normative.

IEC 61513 has adopted a presentation format similar to the basic safety publication IEC 61508 with an overall safety life-cycle framework and a system life-cycle framework. Regarding nuclear safety, it provides an interpretation of the general requirements of IEC 61508-1, IEC 61508-2 and IEC 61508-4, for the nuclear application sector. In this framework IEC 60880 and IEC 62138 correspond to IEC 61508-3 for the nuclear application sector. IEC 61513 refers to ISO as well as to IAEA GS-R-3 and IAEA GS-G-3.1 and IAEA GS-G-3.5 for topics related to quality assurance (QA).

The IEC SC 45A standards series consistently implements and details the principles and basic safety aspects provided in the IAEA code on the safety of NPPs and in the IAEA safety series, in particular the Requirements SSR-2/1, establishing safety requirements related to the design of Nuclear Power Plants, and the Safety Guide NS-G-1.3 dealing with instrumentation and control systems important to safety in Nuclear Power Plants. The terminology and definitions used by SC 45A standards are consistent with those used by the IAEA.

NOTE It is assumed that for the design of I&C systems in NPPs that implement conventional safety functions (e.g., to address worker safety, asset protection, chemical hazards, process energy hazards) international or national standards would be applied that are based on the requirements of a standard such as IEC 61508.

NUCLEAR POWER PLANTS – INSTRUMENTATION AND CONTROL IMPORTANT TO SAFETY – ELECTRICAL EQUIPMENT CONDITION MONITORING METHODS –

Part 5: Optical time domain reflectometry

1 Scope and object

This part of IEC/IEEE 62582 contains methods for monitoring the attenuation condition of optical fibres and cables in instrumentation and control systems using optical time domain reflectometer (OTDR) measurements in the detail necessary to produce accurate and reproducible measurements. It includes the requirements for the measurement system and conditions, and the reporting of the measurement results.

The different parts of IEC/IEEE 62582 are measurement standards, primarily for use in the management of ageing in initial qualification and after installation. IEC/IEEE 62582-1 includes requirements for the application of the other parts of IEC/IEEE 62582 and some elements which are common to all methods. Information on the role of condition monitoring in qualification of equipment important to safety is found in IEEE Std 323. Detailed descriptions of methods for OTDR measurement of the quality and functionality of fibre optic cables are given in IEC 61280-4-1 for multimode attenuation and in IEC 61280-4-2 for single-mode attenuation.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61746-1, Calibration of optical time-domain reflectometers (OTDR) - Part 1: OTDR for single mode fibres

IEC 61746-2, Calibration of optical time-domain reflectometers (OTDR) – Part 2: OTDR for multimode fibres

SOMMAIRE

AVANT-PI	ROPOS	30
INTRODU	CTION	32
1 Doma	aine d'application et objet	34
2 Référ	ences normatives	34
3 Term	es et définitions	34
4 Abré	viations et acronymes	36
	ription générale	
	cabilité et reproductibilité	
	édure de mesure par rétrodiffusion	
7.1	Généralités	
7.1	Instrumentation	
7.3	Longueurs d'onde de mesure	
7.4	Etalonnage	
7.5	Précautions à prendre pour réaliser les mesures par rétrodiffusion	39
7.6	Conditionnement	39
7.7	Mesure par rétrodiffusion	39
7.8	Erreurs de mesure	
7.9	Rapport d'essai	41
	(informative) Facteurs d'influence des mesures d'affaiblissement des à fibre optique	42
A.1	Généralités	42
A.2	Température et humidité	42
A.3	Courbure	
A.4	Puissance lumineuse transmise	
A.5	Raccord d'interface	42
	(informative) Vieillissement et endommagement des fibres optiques dans les nucléaires de puissance	43
B.1	Facteurs d'influence du vieillissement	
B.1.1		
B.1.2	•	
B.2	Vieillissement dû aux rayonnements ionisants	
B.2.1	Généralités	
B.2.2	ĕ	44
	(informative) Recommandations portant sur le choix des paramètres de	48
C.1	Choix de gamme de distances	
C.2	Choix de la durée d'impulsion et définition de la zone morte	
C.3	Choix de la longueur d'onde	
C.4	Choix et position des marqueurs	48
C.5	Choix de la méthode du calcul de la moyenne	50
C.6	Mises à l'échelle verticale et horizontale (v-zoom, h-zoom)	
C.7	Décalages vertical et horizontal	
C.8	Mise en service ou à l'arrêt du laser	
C.9	Initialisation de l' <i>IDR</i> et de l'indice de groupe	
C.10	Utilisation d'un affaiblisseur	
Bibliograp	hie	52

Figure 1 – Blocs fonctionnels du RDT	38
Figure 2 – Tracé d'onde typique du RDT – Puissance rétrodiffusée par rapport à la distance (km)	40
Figure 3 – Exemples de défauts	40
Figure B.1 – Tracé de sortie classique d'un RDT	43
Figure B.2 – AIR pour différents types de fibre	45
Figure B.3 – Exemple d'AIR en fonction de la longueur d'onde pour une fibre optique	46
Figure C.1 – Marqueurs de mesure de l'affaiblissement	49
Figure C.2 – Marqueurs de mesure de la perte au raccord	49
Figure C.3 – Méthodes d'approximation AMC et A2P	50
Figure C.4 – Tracés réalisés pour une fibre avec un affaiblisseur initialisé respectivement à 0 dB et à 5 dB	51

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

CENTRALES NUCLÉAIRES DE PUISSANCE – INSTRUMENTATION ET CONTRÔLE-COMMANDE IMPORTANTS POUR LA SÛRETÉ – MÉTHODES DE SURVEILLANCE DE L'ÉTAT DES MATÉRIELS ÉLECTRIQUES –

Partie 5: Technique de rétrodiffusion

AVANT-PROPOS

1) La Commission Electrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l'IEC). L'IEC a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, l'IEC – entre autres activités – publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de l'IEC"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'IEC, participent également aux travaux.

Les normes de l'IEEE sont élaborées par les Sociétés de l'IEEE, ainsi que par les Comités de coordination des normes du Conseil de normalisation de l'IEEE Standards Association (IEEE-SA). Ces normes sont l'aboutissement d'un consensus, soumis à l'approbation de l'Institut national américain de normalisation, qui rassemble des bénévoles représentant divers points de vue et intérêts. Les participants bénévoles ne sont pas nécessairement membres de l'IEEE et leur intervention n'est pas rétribuée. Si l'IEEE administre le déroulement de cette procédure et définit les règles destinées à favoriser l'équité du consensus, l'IEEE lui-même n'évalue pas, ne teste pas et ne vérifie pas l'exactitude de toute information contenue dans ses normes. L'utilisation de normes de l'IEEE est entièrement volontaire. Les documents de l'IEEE sont disponibles à des fins d'utilisation, à condition d'être assortis d'avis importants et de clauses de non-responsabilité (voir http://standards.ieee.org/IPR/disclaimers.html pour de plus amples informations).

L'IEC travaille en étroite collaboration avec l'IEEE, selon des conditions fixées par accord entre les deux organisations. Cette norme internationale double logo a été élaborée conjointement par l'IEC et l'IEEE, conformément aux dispositions de cet accord.

- 2) Les décisions officielles de l'IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l'IEC intéressés sont représentés dans chaque comité d'études. Une fois le consensus établi entre les Sociétés de l'IEEE et les Comités de coordination des normes, les décisions officielles de l'IEEE relatives aux questions techniques sont déterminées en fonction du vote exprimé par un groupe à la composition équilibrée, composé de parties intéressées qui manifestent leur intérêt pour la révision des normes proposées. L'approbation finale de la norme de l'IEEE est soumise au Conseil de normalisation de l'IEEE Standards Association (IEEE-SA).
- 3) Les Publications IEC/IEEE se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de l'IEC/Sociétés de l'IEEE. Tous les efforts raisonnables sont entrepris afin de s'assurer de l'exactitude du contenu technique des Publications IEC/IEEE; l'IEC ou l'IEEE ne peuvent pas être tenus responsables de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de l'IEC (y compris les Publications IEC/IEEE) dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications IEC/IEEE et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) L'IEC et l'IEEE eux-mêmes ne fournissent aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l'IEC. L'IEC et l'IEEE ne sont responsables d'aucun des services effectués par les organismes de certification indépendants.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à l'IEC ou à l'IEEE, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l'IEC, ou les bénévoles des Sociétés de l'IEEE et des Comités de coordination des normes du Conseil de normalisation de l'IEEE Standards Association (IEEE-SA), pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la

publication ou de l'utilisation de cette Publication IEC/IEEE ou toute autre publication de l'IEC ou de l'IEEE, ou au crédit qui lui est accordé.

- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur fait que la mise en application de cette Publication IEC/IEEE peut requérir l'utilisation de matériels protégés par des droits de brevet. En publiant cette norme, aucun parti n'est pris concernant l'existence ou la validité de droits de brevet y afférents. Ni l'IEC ni l'IEEE ne peuvent être tenus d'identifier les revendications de brevet essentielles pour lesquelles une autorisation peut s'avérer nécessaire, d'effectuer des recherches sur la validité juridique ou l'étendue des revendications des brevets, ou de déterminer le caractère raisonnable ou non discriminatoire des termes ou conditions d'autorisation énoncés dans le cadre d'un Certificat d'assurance, lorsque la demande d'un tel certificat a été formulée, ou contenus dans tout accord d'autorisation. Les utilisateurs de cette norme sont expressément informés du fait que la détermination de la validité de tous droits de propriété industrielle, ainsi que les risques qu'impliquent la violation de ces droits, relèvent entièrement de leur seule responsabilité.

La Norme internationale IEC/IEEE 62582-5 a été établie par le sous-comité 45A: Systèmes d'instrumentation, de contrôle-commande et électriques des installations nucléaires, du comité d'études 45 de l'IEC: Instrumentation nucléaire, en coopération avec le «Nuclear Power Engineering Committee» de la «Power & Energy Society» de l'IEEE¹, selon l'accord double logo IEC/IEEE entre l'IEC et l'IEEE.

La présente publication est une norme double logo IEC/IEEE.

Le texte de cette norme est issu des documents suivants de l'IEC:

FDIS	Rapport de vote
45A/1008A/FDIS	45A/1021/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/IEC, Partie 2.

La liste de toutes les parties de la série IEC/IEEE 62582, publiées sous le titre général Centrales nucléaires de puissance — Instrumentation et contrôle-commande importants pour la sûreté — Méthodes de surveillance de l'état des matériels électriques peut être consultée sur le site web de l'IEC.

Le comité d'études de l'IEC et le comité d'études de l'IEEE ont décidé que le contenu de cette publication ne sera pas modifié avant la date de stabilité indiquée sur le site web de l'IEC sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite,
- supprimée,
- · remplacée par une édition révisée, ou
- · amendée.

IMPORTANT – Le logo "colour inside" qui se trouve sur la page de couverture de cette publication indique qu'elle contient des couleurs qui sont considérées comme utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent, imprimer cette publication en utilisant une imprimante couleur.

Une liste des participants IEEE est disponible à l'adresse suivante: http://standards.ieee.org/downloads/62582/62582-5-2015/62582-5-2015 wg-participants.pdf.

INTRODUCTION

a) Contexte technique, questions importantes et structure de la présente norme

La présente norme IEC/IEEE s'intéresse plus particulièrement aux méthodes liées à la technique de rétrodiffusion utilisées dans le cadre de surveillance d'état pour la gestion du vieillissement des câbles à fibres optiques intégrés dans les équipements électriques installés dans les centrales nucléaires de puissance.

Cette norme est la cinquième partie de la norme IEC/IEEE 62582. Elle contient une description détaillée de la surveillance d'état basée sur les mesures associées à la technique de rétrodiffusion, réalisées sur des câbles à fibres optiques.

La série de normes IEC/IEEE 62582 est publiée en double logo ce qui la rend applicable pour la gestion du vieillissement des matériels électriques qualifiés tant dans le cadre des normes IEEE que dans celui des normes IEC.

Historiquement, la norme IEEE 323™-2003 a introduit le concept et le rôle complémentaire que pouvait jouer la qualification reposant sur l'état du matériel dans le cadre de la qualification des matériels au niveau de la durée de vie certifiée. Dans le cadre de la qualification du matériel, l'état du matériel pour lequel des performances acceptables ont été prouvées correspond à l'état qualifié. L'état qualifié est l'état de l'équipement prévalant au début d'un événement de dimensionnement, pour lequel il a été démontré que le matériel satisfaisait aux exigences de conception pour les conditions de service spécifiées.

Des recherches importantes ont été réalisées sur les techniques de surveillance de l'état des matériels et l'utilisation de ces techniques dans le cadre de la qualification des matériels, comme indiqué dans les documents NUREG/CR-6704, Vol. 2 (BNL-NUREG-52610) et JNES-SS-0903, 2009.

L'objectif de la présente norme est d'être utilisée par les laboratoires d'essai, les exploitants de centrales nucléaires, les évaluateurs de système et par les régulateurs.

b) Position de la présente norme dans la collection de normes du SC 45A de l'IEC

L'IEC/IEEE 62582-5 est le document du SC 45A de l'IEC de troisième niveau qui traite du problème particulier de l'application et des performances des mesures faites en utilisant des techniques de rétrodiffusion dans le cadre de la gestion du vieillissement des câbles à fibres optiques intégrés dans les équipements électriques installés dans les centrales nucléaires de puissance.

L'IEC/IEEE 62582-5 doit être lue avec l'IEC/IEEE 62582-1, qui fournit les exigences pour l'application des méthodes de surveillance d'état des matériels électriques importants pour la sûreté utilisés dans les centrales nucléaires de puissance.

Pour plus de détails sur la collection de normes du SC 45A de l'IEC, voir le point d) de cette introduction.

c) Recommandations et limites relatives à l'application de présente norme

Il est important de noter que la présente norme n'établit pas d'exigence fonctionnelle supplémentaire pour les systèmes de sûreté.

d) Description de la structure de la collection des normes du SC 45A de l'IEC et relations avec d'autres documents de l'IEC, et d'autres organisations (AIEA, ISO)

Le document de niveau supérieur de la collection de normes produites par le SC 45A de l'IEC est la norme IEC 61513. Cette norme traite des exigences relatives aux systèmes et équipements d'instrumentation et de contrôle-commande (systèmes d'I&C) utilisés pour accomplir les fonctions importantes pour la sûreté des centrales nucléaires, et structure la collection de normes du SC 45A de l'IEC.

L'IEC 61513 fait directement référence aux autres normes du SC 45A de l'IEC traitant de sujets génériques, tels que la catégorisation des fonctions et le classement des systèmes, la qualification, la séparation des systèmes, les défaillances de cause commune, les aspects logiciels et les aspects matériels relatifs aux systèmes programmés, et la conception des salles de commande. Il convient de considérer que ces normes, de second niveau, forment, avec la norme IEC 61513, un ensemble documentaire cohérent.

Au troisième niveau, les normes du SC 45A de l'IEC, qui ne sont généralement pas référencées directement par la norme IEC 61513, sont relatives à des matériels particuliers, à des méthodes ou à des activités spécifiques. Généralement ces documents, qui font référence aux documents de deuxième niveau pour les activités génériques, peuvent être utilisés de façon isolée.

Un quatrième niveau qui est une extension de la collection de normes du SC 45A de l'IEC correspond aux rapports techniques qui ne sont pas des documents normatifs.

L'IEC 61513 a adopté une présentation similaire à celle de l'IEC 61508, avec un cycle de vie de sûreté d'ensemble et un cycle de vie de sûreté des systèmes. Au niveau sûreté nucléaire, elle est l'interprétation des exigences générales l'IEC 61508-1, de l'IEC 61508-2 et de l'IEC 61508-4 pour le secteur nucléaire, pour ce qui concerne le domaine de la sûreté nucléaire. Dans ce domaine, l'IEC 60880 et l'IEC 62138 correspondent à l'IEC 61508-3 pour le secteur nucléaire. L'IEC 61513 fait référence aux normes ISO ainsi qu'aux documents AIEA GS-R-3 et AIEA GS-G-3.1 et AIEA GS-G-3.5 pour ce qui concerne l'assurance qualité.

Les normes produites par le SC 45A de l'IEC sont élaborées de façon à être en accord avec les principes de sûreté fondamentaux du Code AIEA sur la sûreté des centrales nucléaires, ainsi qu'avec les guides de sûreté de l'AIEA, en particulier avec le document d'exigences SSR-2/1 qui établit les exigences de sûreté relatives à la conception des centrales nucléaires et avec le guide de sûreté NS-G-1.3 qui traite de l'instrumentation et du contrôle commande importants pour la sûreté des centrales nucléaires. La terminologie et les définitions utilisées dans les normes produites par le SC 45A sont conformes à celles utilisées par l'AIEA.

NOTE Il est fait l'hypothèse que pour la conception des systèmes d'I&C qui sont supports de fonctions de sûreté conventionnelle (par exemple pour garantir la sécurité des travailleurs, la protection des biens, la prévention contre les risques chimiques, la prévention contre les risques liés au procédé énergétique) on applique des normes nationales ou internationales, dont les exigences sont comparables à des normes telles que l'IEC 61508.

CENTRALES NUCLÉAIRES DE PUISSANCE – INSTRUMENTATION ET CONTRÔLE-COMMANDE IMPORTANTS POUR LA SÛRETÉ – MÉTHODES DE SURVEILLANCE DE L'ÉTAT DES MATÉRIELS ÉLECTRIQUES –

Partie 5: Technique de rétrodiffusion

1 Domaine d'application et objet

La présente partie de l'IEC/IEEE 62582-5 présente des méthodes de surveillance du phénomène d'affaiblissement affectant les câbles à fibres optiques intégrés dans les systèmes d'instrumentation et de contrôle-commande en utilisant des techniques de rétrodiffusion, de façon suffisamment détaillée pour obtenir des mesures reproductibles et précises. Elle comprend des exigences concernant les systèmes de mesure et les conditions de mesure, ainsi que les rapports des résultats de mesure.

Les différentes parties de l'IEC/IEEE 62582 sont des normes de mesure, principalement destinées à être utilisées pour la gestion du vieillissement dans le cadre de la qualification initiale et après installation. L'IEC/IEEE 62582-1 fournit des exigences applicables pour toutes les autres parties de l'IEC/IEEE 62582 et certains éléments communs à toutes les méthodes. L'IEEE 323 fournit des informations concernant le rôle de la surveillance de l'état dans la qualification des équipements importants pour la sûreté. Des descriptions détaillées des méthodes de mesures par rétrodiffusion, de la qualité et des fonctionnalités des câbles à fibres optiques sont données dans l'IEC 61280-4-1 pour l'affaiblissement multimodal et dans l'IEC 61280-4-2 pour l'affaiblissement unimodal.

2 Références normatives

Les documents suivants sont cités en référence de manière normative, en intégralité ou en partie, dans le présent document et sont indispensables pour son application. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

IEC 61746-1, Etalonnage des réflectomètres optiques dans le domaine temporel (OTDR) – Partie 1: OTDR pour fibres unimodales

IEC 61746-2, Calibration of optical time-domain reflectometers (OTDR) – Part 2: OTDR for multimode fibres (disponible en anglais seulement)